全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > AI人工智能 > AI通用技术 >

MIT利用人工智不仅能识别多种乐器,还能过滤声

时间:2018-07-10 09:01

人气:

作者:admin

标签: 人工智能  神经网络 

导读:MIT利用人工智不仅能识别多种乐器,还能过滤声音让音乐更悦耳-PixelPlayer 的核心是一种基于乐器组合多模态训练的神经网络,数据集采用了 Youtube 上 714 条未经修剪且未经标记的视频。...

一般利用均衡器可以将音乐中的低音部分调出来,但是麻省理工学院的计算机科学和人工智能实验室(Computer Science and Artificial Intelligence Lab,CSAIL)的研究人员发现了更好的解决方案。他们所研发的新系统 PixelPlayer,能够利用人工智能来区分和过滤声音,让音乐听起来更洪亮或更柔和。

将指定视频录入经过充分训练的 PixelPlayer,系统随机能够过滤伴奏,同时识别音源,接着计算图像中每个像素的音量,然后通过“空间定位”确定产生相似音波的片段。

今年9月,德国慕尼黑即将举行欧洲计算机视觉会议(European Conference on Computer Vision),会议中要发表的一篇新论文则详细论述了“像素的声音(The Sound of Pixels)”。麻省理工学院计算机科学和人工智能实验室的博士生,同时也是这篇论文的合著者 Zhao Hang 同学表示,“最好的情况就是,我们能识别出哪种乐器发出怎样的声音。”

PixelPlayer 的核心是一种基于乐器组合多模态训练的神经网络,数据集采用了 Youtube 上 714 条未经修剪且未经标记的视频。其中,总时长为 60 小时的 500 条视频用于训练,剩余的则用于验证和测试。在训练过程中,研究人员分别根据原声吉他、大提琴、单簧管、长笛和其他乐器向系统馈入了算法

这只是 PixelPlayer 多重机器学习框架的一个部分。经过训练后的视频分析算法将从剪辑帧中提取出视觉特征,这就是系统的第二个神经网络,即音频分析网络。音频分析网络将声音拆分为片段,并从中提取特征。最后,音频合成网络将把上述两个网络输出的特定像素和声波关联起来。

PixelPlayer 进行完全自监督的学习,人们无需对数据注释,而且系统目前已经能识别 20 种乐器。Zhao Hang 说,较大的数据集增强了系统的识别量,但识别乐器子类的能力却不佳。系统也可以识别音乐元素,例如小提琴的谐波频率。

研究人员认为 PixelPlayer 可以进行声音剪辑,或者帮助机器人理解动物、车辆和其他物体所制造的环境声音。他们写到,“我们希望我们的工作能够开辟新的研究途径,从视觉和听觉信号角度实现声源分离”。

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信