全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > AI人工智能 > AI通用技术 >

一文看懂常用的梯度下降算法

时间:2017-12-04 18:17

人气:

作者:admin

标签:   常用的  用的  一文  看懂 

导读:一文看懂常用的梯度下降算法-编辑:祝鑫泉 一 概述 梯度下降算法( Gradient Descent Optimization )是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来...

编辑:祝鑫泉




概述

梯度下降算法(Gradient Descent Optimization)是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。梯度下降算法背后的原理:目标函数

关于参数

的梯度将是目标函数上升最快的方向。对于最小化优化问题,只需要将参数沿着梯度相反的方向前进一个步长,就可以实现目标函数的下降。这个步长又称为学习速率

。参数更新公式如下:

其中

是参数的梯度,根据计算目标函数

采用数据量的不同,梯度下降算法又可以分为批量梯度下降算法(Batch Gradient Descent),随机梯度下降算法(Stochastic GradientDescent)和小批量梯度下降算法(Mini-batch Gradient Descent)。对于批量梯度下降算法,

是在整个训练集上计算的,如果数据集比较大,可能会面临内存不足问题,而且其收敛速度一般比较慢。随机梯度下降算法是另外一个极端,

是针对训练集中的一个训练样本计算的,又称为在线学习,即得到了一个样本,就可以执行一次参数更新。所以其收敛速度会快一些,但是有可能出现目标函数值震荡现象,因为高频率的参数更新导致了高方差。小批量梯度下降算法是折中方案,选取训练集中一个小批量样本计算

这样可以保证训练过程更稳定,而且采用批量训练方法也可以利用矩阵计算的优势。这是目前最常用的梯度下降算法。

对于神经网络模型,借助于BP算法可以高效地计算梯度,从而实施梯度下降算法。但梯度下降算法一个老大难的问题是:不能保证全局收敛。如果这个问题解决了,深度学习的世界会和谐很多。梯度下降算法针对凸优化问题原则上是可以收敛到全局最优的,因为此时只有唯一的局部最优点。而实际上深度学习模型是一个复杂的非线性结构,一般属于非凸问题,这意味着存在很多局部最优点(鞍点),采用梯度下降算法可能会陷入局部最优,这应该是最头疼的问题。这点和进化算法如遗传算法很类似,都无法保证收敛到全局最优。因此,我们注定在这个问题上成为高级调参师。可以看到,梯度下降算法中一个重要的参数是学习速率,适当的学习速率很重要:学习速率过小时收敛速度慢,而过大时导致训练震荡,而且可能会发散。理想的梯度下降算法要满足两点:收敛速度要快;能全局收敛。为了这个理想,出现了很多经典梯度下降算法的变种,下面将分别介绍它们。


01

Momentum optimization

冲量梯度下降算法是BorisPolyak1964年提出的,其基于这样一个物理事实:将一个小球从山顶滚下,其初始速率很慢,但在加速度作用下速率很快增加,并最终由于阻力的存在达到一个稳定速率。对于冲量梯度下降算法,其更新方程如下:

一文看懂常用的梯度下降算法

可以看到,参数更新时不仅考虑当前梯度值,而且加上了一个积累项(冲量),但多了一个超参

一文看懂常用的梯度下降算法

,一般取接近1的值如0.9。相比原始梯度下降算法,冲量梯度下降算法有助于加速收敛。当梯度与冲量方向一致时,冲量项会增加,而相反时,冲量项减少,因此冲量梯度下降算法可以减少训练的震荡过程。TensorFlow中提供了这一优化器:tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)。


02 

NAG

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信